
Simulink® HDL Coder™
Release Notes

Contents

Summary by Version . 1

Version 1.3 (R2008a) Simulink® HDL Coder™
Software . 4

Version 1.2 (R2007b) Simulink® HDL Coder™
Software . 21

Version 1.1 (R2007a) Simulink® HDL Coder™
Software . 29

Compatibility Summary for Simulink® HDL Coder™
Software . 32

iii

iv Contents

Simulink® HDL Coder™ Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 1.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

Latest Version
V1.3 (R2008a)

Yes
Details

Yes
Summary

Bug Reports Printable Release
Notes: PDF

Current product
documentation

V1.2 (R2007b) Yes
Details

Yes
Summary

Bug Reports No

V1.1
(R2007a)

Yes
Details

No Bug Reports No

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

Review the release notes for other MathWorks™ products required for this
product (for example, MATLAB® or Simulink®) for enhancements, bugs, and
compatibility considerations that also might impact you.

If you are upgrading from a software version other than the most recent one,
review the release notes for all interim versions, not just for the version you
are installing. For example, when upgrading from V1.0 to V1.2, review the
release notes for V1.1 and V1.2.

1

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/access/helpdesk/help/pdf_doc/slhdlcoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a

Simulink® HDL Coder™ Release Notes

What’s in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations
When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the impact.

Compatibility issues reported after the product is released appear under
Bug Reports at the MathWorks Web site. Bug fixes can sometimes result in
incompatibilities, so you should also review the fixed bugs in Bug Reports
for any compatibility impact.

Fixed Bugs and Known Problems

The MathWorks offers a user-searchable Bug Reports database so you can
view Bug Reports. The development team updates this database at release
time and as more information becomes available. This includes provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

About Functions and Properties Being Removed
This section lists functions or properties removed or in the process of being
removed. Functions and properties typically go through several stages across
multiple releases before being completely removed. This provides time for you
to make adjustments to your code.

• Announcement — The Release Notes announce the planned removal, but
there are no functional changes; the function runs as it did before.

• Warning — When you run the function, it displays a warning message
indicating it will be removed in a future release; otherwise the function
runs as it did before.

2

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/

Summary by Version

• Error — When you run the function, it produces an error. The error
message indicates the function was removed and suggests a replacement
function, if one is available.

• Removal — When you run the function, it fails. The error message is the
standard message when MATLAB does not recognize an entry.

Functions and properties might be in a stage for one or more releases before
moving to another stage. Functions and properties are listed in the Functions
and Properties Being Removed section only when they enter a new stage
and their behavior changes. For example, if a function displayed a warning
in the previous release and errors in this release, it appears on the list. If it
continues to display a warning, it does not appear on the list because there
was no change between the releases.

Not all functions and properties go through all stages. For example, a
function’s impending removal might not be announced, but instead, the first
notification might be that the function displays a warning.

The Release Notes include actions you can take to mitigate the effects of
function or property removal, such as adapting your code to use a replacement
function.

3

Simulink® HDL Coder™ Release Notes

Version 1.3 (R2008a) Simulink® HDL Coder™ Software
This table summarizes what’s new in V1.3 (R2008a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes
Summary

Bug Reports Printable Release
Notes: PDF

Current product
documentation

New features and changes introduced in this version are:

• “Complex Data Type Support” on page 5

• “Test Bench Ehancements” on page 6

• “Additional Blocks Supported for HDL Code Generation” on page 8

• “Enhanced Pipelining Support” on page 9

• “Additional RAM Blocks” on page 11

• “Enhanced Math Function and Divide Block Support” on page 12

• “Optional Suppression of Reset Logic Generation for Selected Delay Blocks”
on page 12

• “Enhanced Embedded MATLAB™ Function Block Support” on page 13

• “Stateflow® Chart Support Supports Complex Data Type” on page 16

• “hdlnewcontrolfile Function Generates Control Files Automatically” on
page 16

• “Integrating FPGA Vendor Tools with Simulink® HDL Coder™” on page 17

• “Timing Controller Optimization for Multirate Models” on page 17

• “Enhanced modelscope Syntax Increases Portability of Control Files” on
page 18

• ““What’s This?” Context-Sensitive Help Available for Simulink®

Configuration Parameters Dialog” on page 19

4

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2008a
http://www.mathworks.com/access/helpdesk/help/pdf_doc/slhdlcoder/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/
http://www.mathworks.com/access/helpdesk/help/toolbox/slhdlcoder/

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

• “Limited Variable-Step Solver Support” on page 20

Complex Data Type Support
The coder now supports use of signals of complex data type.

You can use complex signals in the test bench without restriction.

In the device under test (DUT) selected for HDL code generation, support for
complex signals is limited to a subset of the blocks supported by the coder.
Some restrictions apply for some of these blocks. These blocks are listed in
“Blocks That Support Complex Data”.

New Options Supporting Complex Data Types
Two new code generation options have been added to help you customize
naming conventions for the real and imaginary components of complex signals
in generated HDL code. These options are available to the Global Settings /
General pane in the HDL Coder pane of the Configuration Parameters
dialog box, as shown in the following figure.

5

Simulink® HDL Coder™ Release Notes

The Complex real part postfix option (and the corresponding
ComplexRealPostfix CLI property) specifies a string to be appended to the
names generated for the real part of complex signals. The default postfix is
'_re'. See also “Complex real part postfix”.

The Complex imaginary part postfix option (and the corresponding
ComplexImagPostfix CLI property) specifies a string to be appended to the
names generated for the imaginary part of complex signals. The default
postfix is '_im'. See also “Complex imaginary part postfix”.

Test Bench Ehancements
This release includes significant enhancements to test bench generation.

6

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

Test Bench Supports Complex Data Type
You can use complex signals in the test bench without restriction. Use of
complex signals within the DUT is limited to a subset of supported blocks.
See also “Complex Data Type Support” on page 5.

New Test Bench Options and Properties
A number of options have been added to the HDL Coder / Test Bench pane
of the Configuration Parameters dialog box, as shown in the following figure.

Most of the new options have a corresponding command-line property. The
following table lists the new options and their corresponding CLI properties,
and provides hyperlinks to the relevant documentation.

7

Simulink® HDL Coder™ Release Notes

GUI Option Command-line Property

Setup time: See “Setup time (ns)” This is a display-only field. It
does not have a corresponding
user-settable command-line
property.

Clock enable delay (in clock
cycles): See “Clock enable delay (in
clock cycles)”

TestBenchClockEnableDelay

Reset length : See “Reset length (in
clock cycles)”

ResetLength

Hold input data between
samples: See “Hold input data
between samples”

HoldInputDataBetweenSamples

Initialize test bench inputs: See
“Initialize test bench inputs”

InitializeTestBenchInputs

Multi-file test bench : See
“Multi-file test bench”

MultifileTestBench

Test bench data file name postfix
: See “Test bench data file name
postfix”

TestBenchDataPostFix

Ignore test bench data checking:
See “Ignore output data checking
(number of samples)”

IgnoreDataChecking

Generate cosimulation blocks:
See “Generate cosimulation blocks”

GenerateCoSimBlock

Additional Blocks Supported for HDL Code
Generation
The coder now supports the following blocks for HDL code generation:

• Communications Blockset/Comm Sources/Sequence Generators/PN
Sequence Generator

(This block requires Communications Blockset™.)

8

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

• Signal Processing Blockset/Multirate Filters/CIC Decimation

• Signal Processing Blockset/Multirate Filters/FIR Decimation

• Signal Processing Blockset/Signal Operations/NCO

• Signal Processing Blockset/Signal Processing Sources/Sine Wave

• Simulink/Discontinuities/Saturation

• Simulink/Discrete/Discrete-Time Integrator

• Simulink/Math Operations/Real-Imag to Complex

• Simulink/Math Operations/Complex to Real-Imag

• Simple Dual Port RAM (see also “Additional RAM Blocks” on page 11.)

• Single Port RAM (see also “Additional RAM Blocks” on page 11.)

See “Summary of Block Implementations” for a complete listing of blocks that
are currently supported for HDL code generation.

Enhanced Pipelining Support
In the previous release, the coder introduced output pipelining support
for many block implementations (see “OutputPipeline”). In this release,
pipelining support has been significantly expanded and enhanced. The
following sections discuss new pipelining features.

Input Pipelining
You can now specify generation of input pipeline registers for selected
blocks. To do this, invoke the new block implementation parameter
{'InputPipeline', nStages} in a control file. The parameter value
(nStages) specifies the number of input pipeline stages (pipeline depth) in the
generated code. See “InputPipeline” for further information.

Most HDL block implementations support InputPipeline. See “Summary
of Block Implementations” for a complete list of block implemenations and
their parameters.

9

Simulink® HDL Coder™ Release Notes

Automatic Pipeline Insertion for Embedded MATLAB™ Function
Block and Stateflow® Chart
In this release, the coder introduces automatic pipeline insertion, a special
optimization for HDL code generated from Embedded MATLAB™ Function
blocks or Stateflow® charts. Automatic pipeline insertion is performed when
the {'OutputPipeline', nStages} parameter is specified for these blocks.
When you specify OutputPipeline, the coder inserts internal pipeline stages
into the HDL code generated for these blocks (rather than at the output of the
HDL code) whenever possible. The nStages argument defines the number of
pipeline stages to be inserted.

Automatic pipeline insertion lets you achieve higher clock rates in your HDL
applications, at the cost of some latency caused by the introduction of pipeline
registers.

See “Automatic Pipeline Insertion” for a detailed description of this feature.

Customizable Pipeline Register Names
When generating code for pipeline registers, the coder appends a postfix string
to names of input or output pipeline registers. The default postfix string
is _pipe. You can now customize the postfix string. To specify the postfix,
use the Pipeline postfix option in the Global Settings / General pane in
the HDL Coder pane of the Configuration Parameters dialog box (see the
following figure). Alternatively, you can pass the desired postfix string in the
makehdl property PipelinePostfix. See “Pipeline postfix” for an example.

10

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

Additional RAM Blocks
The coder now supports two new RAM blocks, supplementing the previously
supported Dual Port RAM block:

• Simple Dual Port RAM: This block is identical to the Dual Port RAM , but
does not have a data output at the write port. If data output at the write
port is not required, you can achieve better RAM inferring with synthesis
tools by using the Simple Dual Port RAM block rather than the Dual Port
RAM block.

• Single Port RAM: This block provides data input, write address and write
enable, and data output ports. The block GUI includes a Output data
during write drop-down menu, providing options that control how the
generated RAM handles data that is read into the RAM during a write
operation.

11

Simulink® HDL Coder™ Release Notes

See “Generating an Interface for RAM Blocks” for detailed information on
RAM blocks.

Enhanced Math Function and Divide Block Support
The coder now supports a wider range of functions and algorithms for the
Math Function and Divide blocks, as follows:

• The Math Function block reciprocal operation is now supported.
Implementations using either hardware divide (HDL / operator) or
iterative Newton algorithm are available.

• The Math Function block conj function is now supported.

• The Math Function block sqrt function implementations now support
a choice of of multiply/add, bitset shift/addition, or iterative Newton
algorithms.

• The Math Operations/Divide block reciprocal operation now supports
implementations using either hardware divide (HDL / operator) or the
iterative Newton algorithm.

See “Math Function Block Implementations” and “Divide Block
Implementations” for further information.

Optional Suppression of Reset Logic Generation for
Selected Delay Blocks
The new {'ResetType','None'} block implementation parameter lets you
suppress generation of reset logic for selected delay blocks. The following
blocks support this parameter:

• Integer Delay

• Tapped Delay

• Unit Delay

• Unit Delay Enabled

The following control file specifies suppression of reset logic for a specific unit
delay block within the subsystem resetnone_examp/HDLSubsystem.

12

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

function c = resetnone_examp

% Control file for resetnone_examp
c = hdlnewcontrol(mfilename);
c.generateHDLFor('resetnone_examp/HDLSubsystem');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Suppress reset logic for Unit Delay block

c.forEach('resetnone_examp/HDLSubsystem/Unit Delay',...
'built-in/UnitDelay', {},...
'hdldefaults.UnitDelayHDLEmission', {'ResetType','none'});

See “ResetType” for further information.

Enhanced Embedded MATLAB™ Function Block
Support
HDL code generation support for the Embedded MATLAB Function block has
been enhanced in Release 2008a, as discussed in the following sections.

hdlfimath Utility for Configuring Optimized FIMATH Settings
In this release, the coder provides the M-function hdlfimath.m, a utility that
defines a FIMATH specification that is optimized for HDL code generation.
When you configure an Embedded MATLAB Function Block for HDL code
generation, it is strongly recommended that you replace the default FIMATH
for fixed-point signals specification with a call to the hdlfimath function,
as shown in the following figure.

13

Simulink® HDL Coder™ Release Notes

See “Use the hdlfimath Utility for Optimized FIMATH Settings” for further
information.

Support for Complex Data Type
Embedded MATLAB Function block now supports use of complex data
type for HDL code generation. All operators that support complex data
types can be used in a Embedded MATLAB Function block code, subject to
some restrictions. See the eml_hdl_design_patterns library for numerous
examples showing applications of complex arithmetic in Embedded MATLAB
Function blocks.

14

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

Support for Compiled External M-Functions on the Embedded
MATLAB™ Path
You can now generate HDL code from Embedded MATLAB Function blocks
that include compiled external M-functions. This feature lets you write
reusable M-code that can be called from multiple Embedded MATLAB
Function blocks.

Such functions must be defined in M-files that are on the Embedded MATLAB
path, and must include the %#eml compilation directive. See “Adding the
Compilation Directive %#eml” in the Embedded MATLAB documentation
for complete details.

Support for Non-Tunable Parameter Arguments
An Embedded MATLAB function argument can be declared as a parameter
argument by setting its Scope to Parameter in the Ports and Data Manager
GUI.

Parameter arguments for Embedded MATLAB Function blocks do not
appear as signal ports on the block. Parameter arguments do not take their
values from signals in the Simulink model. Instead, their values come from
parameters defined in a parent Simulink masked subsystem or variables
defined in the MATLAB® base workspace.

Only nontunable parameter arguments are supported for HDL code
generation. If you declare parameter arguments in Embedded MATLAB
function code that is intended for HDL code generation, be sure to clear the
Tunable option for each parameter argument.

See also “Parameter Arguments in Embedded MATLAB Functions” in the
Simulink® documentation.

Enhanced Support for Fixed-Point Functions

Rounding Functions. The Embedded MATLAB Function block now
supports the following Fixed-Point Toolbox™ rounding functions for HDL
code generation:

• ceil

15

Simulink® HDL Coder™ Release Notes

• fix

• floor

• nearest

See also “Supported Functions and Limitations of Fixed-Point Embedded
MATLAB Subset” in the Fixed-Point Toolboxdocumentation.

Other Functions. The Embedded MATLAB Function block now supports the
following for HDL code generation:

• The bitreplicate function

• The bitconcat function now supports:

- single-vector argument:

bitconcat([a_vector]);

- variable argument list:

bitconcat(a,b,c,...);

For general information on these functions, see “Supported Functions and
Limitations of Fixed-Point Embedded MATLAB Subset” in the Fixed-Point
Toolboxdocumentation.

Stateflow® Chart Support Supports Complex Data
Type
Stateflow charts now support the use of complex data types for HDL code
generation. All operators that support complex data types can be used in
a chart, without restriction.

See also “Stateflow HDL Code Generation Support”.

hdlnewcontrolfile Function Generates Control Files
Automatically
The coder provides the new hdlnewcontrolfile utility to help you construct
code generation control files. Given a selection of one or more blocks from

16

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

your model, hdlnewcontrolfile generates a control file containing forEach
statements and comments providing information about all supported
implementations and parameters, for all selected blocks. The generated
control file is automatically opened in the MATLAB Editor for further
customization. See hdlnewcontrolfile for details.

Integrating FPGA Vendor Tools with Simulink® HDL
Coder™
You can now integrate Simulink® HDL Coder™ with third-party FPGA
vendor tools for HDL code generation. For detailed information on
how to do this, see the Simulink HDL Coder Technical literature page:
http://www.mathworks.com/products/slhdlcoder/technicalliterature.html.

Timing Controller Optimization for Multirate Models
The new Optimize timing controller option (and the corresponding
OptimizeTimingController CLI property) optimizes generated
TimingController entities for speed and code size by generating multiple
counters (one counter for each rate in the model) in the timing controller code.
The benefit of this optimization is that it generates faster logic, and reduces
generated code size.

By default, the Optimize timing controller option is selected, as shown in
the following figure.

17

http://www.mathworks.com/products/slhdlcoder/technicalliterature.html

Simulink® HDL Coder™ Release Notes

See “Optimize timing controller” for further details.

Enhanced modelscope Syntax Increases Portability
of Control Files
The modelscope argument to the forEach and forAll control file methods
has been enhanced to allow use of the period (.) to represent the root-level
model. This lets you represent the current model as an abstraction, instead of
explicitly coding the model name, as in the following example:

cfg.forEach('./Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'hdldefaults.MinMaxCascadeHDLEmission');

If you represent the model in this way, and then save the model under a
different name, the control file does not require any change. Using the period
to represent the root-level model makes the modelscope independent of the
model name, and therefore more portable.

18

Version 1.3 (R2008a) Simulink® HDL Coder™ Software

See also “Representation of the Root Model in modelscopes” in the Simulink
HDL Coder User’s Guide.

Compatibility Considerations
When you save HDL code generation settings to a control file, the control file
contains a generateHDLFor statement that specifies the path to the DUT
specified in the Generate HDL for field. In previous releases, the root-level
model in this path was represented by an explicit model name reference. In
release 2008a, by default, the root-level model is represented by the period, as
described above.

If you resave model settings to an existing control file, be aware that such
explicit references to root-level model name will be changed to the period
syntax, in accordance with this new default. This will not affect the operation
of your existing control files in any way.

“What’s This?” Context-Sensitive Help Available for
Simulink® Configuration Parameters Dialog
R2008a introduces “What’s This?” context-sensitive help for parameters
that appear in the Simulink Configuration Parameters dialog. This feature
provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after a right-click on the Start time parameter in the Solver
pane.

19

Simulink® HDL Coder™ Release Notes

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

Limited Variable-Step Solver Support
In previous releases, only fixed-step solvers were supported for HDL code
generation. In the current release, you can select a variable-step Solver type
for your model, under the following limited conditions:

• The device under test (DUT) is single-rate.

• The sample times of all signals driving the DUT are greater than 0.

20

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

Version 1.2 (R2007b) Simulink® HDL Coder™ Software
This table summarizes what’s new in V1.2 (R2007b):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes
Summary

Bug Reports No

New features and changes introduced in this version are:

• “HDL Code Generation for Single-Clock Multirate Models” on page 21

• “Additional Blocks Supported for HDL Code Generation” on page 22

• “Dual Port RAM Block Supported for Simulation and Code Generation”
on page 23

• “Block Implementation Parameters Include Output Pipelining” on page 23

• “Summary of GUI Updates” on page 24

• “Digital Filter Block Restriction Removed” on page 26

• “Support for New Embedded MATLAB™ Bitwise Functions” on page 27

• “Default Hardware Target for Synthesis Scripts Updated to Virtex-4 ” on
page 27

HDL Code Generation for Single-Clock Multirate
Models
The coder now supports HDL code generation for single-clock, single-tasking
multirate models. Your model can include blocks running at multiple sample
rates:

• Within in the device under test (DUT)

• In the test bench driving the DUT

• In both the test bench and the DUT

21

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007b

Simulink® HDL Coder™ Release Notes

Multirate code generation support is described in detail in “Generating HDL
Code for Multirate Models” in the documentation.

Additional Blocks Supported for Multirate Code Generation
The following blocks, frequently used in construction of multirate models, are
now supported for HDL code generation:

• Signal Attributes/Rate Transition

• Signal Processing Blockset/Signal Operations/Downsample

• Signal Processing Blockset/Signal Operations/Upsample

New Property Added in Support of Multirate Code Generation
To support multirate code generation, a new makehdl property,
HoldInputDataBetweenSamples, has been added. This property determines
how long (in terms of base rate clock cycles) data values for subrate signals
are held in a valid state. See HoldInputDataBetweenSamples for details.

Requirements and Restrictions for Multirate Code Generation
Certain requirements and restrictions apply to the use of multirate models
for HDL code generation. See “Configuring Multirate Models for HDL Code
Generation” for further information.

Additional Blocks Supported for HDL Code
Generation
The coder now supports the following blocks for HDL code generation:

• Additional Math & Discrete/Additional Discrete/Unit Delay Enabled

• Math Operations/Divide

• Math Operations/Math Function (sqrt function only)

• Signal Attributes/Rate Transition

• Signal Processing Blockset/Signal Operations/Downsample

• Signal Processing Blockset/Signal Operations/Upsample

22

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

• Dual Port RAM (For information on this new block, see also “Dual Port
RAM Block Supported for Simulation and Code Generation” on page 23.)

See “Summary of Block Implementations” for a complete listing of blocks that
are currently supported for HDL code generation.

Dual Port RAM Block Supported for Simulation and
Code Generation
The coder now provides the Dual Port RAM Block for use in simulation and
code generation.

The Dual Port RAM block lets you:

• Simulate the behavior of a dual-port RAM with registered outputs in your
model.

• Generate an interface to the inputs and outputs of the RAM in HDL code.

See “Generating an Interface for RAM Blocks” for full details.

Block Implementation Parameters Include Output
Pipelining
The coder now supports block implementation parameters, which let you
control details of the code generated for specific block implementations. Block
implementation parameters are passed as property/value pairs to forEach
or forAll calls in a code generation control file.

Supported Block Implementation Parameters
Block implementation parameters supported in the current release include:

• 'OutputPipeline', nStages: This parameter lets you specify a pipelined
implementation for selected blocks. The parameter value (nStages)
specifies the number of pipeline stages (pipeline depth) in the generated
code. OutputPipeline is supported by most Simulink® HDL Coder™ HDL
Coder block implementations.

• Interface generation parameters let you customize features of an interface
generated for the following block types:

23

Simulink® HDL Coder™ Release Notes

- simulink/Ports & Subsystems/Model

- built-in/Subsystem

- lfilinklib/HDL Cosimulation

- modelsimlib/HDL Cosimulation

For example, you can specify generation of a black box interface for a
subsystem, and pass in parameters that specify the generation and
naming of clock, reset, and other ports in HDL code. Interface generation
parameters are described in “Customizing the Generated Interface”.

For more information on block implementation parameters, see the following
sections in the documentation:

• “Specifying Block Implementations and Parameters in the Control File”

• “Block Implementation Parameters”

• “Summary of Block Implementations”

Using hdlnewforeach to Find Block Implementation Parameters
Given a selection of one or more blocks from your model, the hdlnewforeach
function returns information about the available HDL implementations for
each block.

In the current release, the information returned by hdlnewforeach has been
expanded. hdlnewforeach now returns an optional cell array of strings
specifying the parameter(s) corresponding to each block implementation.

See “Generating Selection/Action Statements with the hdlnewforeach
Function” for details.

Summary of GUI Updates
The following updates have been made to the Simulink HDL Coder GUI:

• The Enable prefix option is now supported by the GUI as well as by the
EnablePrefix command-line property. See “Enable prefix” for details on
this option.

24

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

• The default value for the Synthesis termination field of the EDA Tool
Scripts dialog box has changed, as shown in the following figure. The
default hardware target string in generated synthesis scripts now specifies

- technology option: VIRTEX4

In previous releases, this option defaulted to VIRTEX2.

- part option: XC4VSX35

In previous releases, this option defaulted to XC2V500.

25

Simulink® HDL Coder™ Release Notes

See also “Default Hardware Target for Synthesis Scripts Updated to
Virtex-4 ” on page 27.

Digital Filter Block Restriction Removed
In previous releases, Filter Design HDL Coder™ software was required
to generate HDL code for the Digital Filter block when the Dialog
parameters option was selected in the Coefficient source option group.
This requirement has been removed.

In the current release, the HDL code generation requirements for the Digital
Filter block vary according to the Coefficient source option you select, as
follows:

• Dialog parameters: No additional toolboxes or blocksets required for
HDL code generation.

• Discrete-time filter object: Filter Design HDL Coder software required.

• Input port(s): This option is not supported for HDL code generation.

26

Version 1.2 (R2007b) Simulink® HDL Coder™ Software

See also “Summary of Block Implementations”.

Support for New Embedded MATLAB™ Bitwise
Functions
The code supports the new Embedded MATLAB™ fixed-point bitwise
functions introduced in R2007b. Many of these functions map directly to
HDL bitwise operators, resulting in very efficient HDL code. See “Using
Fixed-Point Bitwise Functions” for examples of the use of these functions in
HDL code generation.

For general information on Embedded MATLAB bitwise functions, see
“Bitwise Functions” in the Fixed-Point Toolbox documentation.

Compatibility Considerations
In previous releases, the return type of the bitget function was ufix8. For
more efficient HDL code generation, the return data type of the bitget
function has been changed to ufix1. If your existing Embedded MATLAB
code performs type casts to adapt values returned from bitget for HDL code
generation, you may be able to eliminate these type casts.

Default Hardware Target for Synthesis Scripts
Updated to Virtex-4
The default hardware target string in generated synthesis scripts now
specifies

• technology option: VIRTEX4

In previous releases, this option defaulted to VIRTEX2.

• part option: XC4VSX35

In previous releases, this option defaulted to XC2V500.

These updates affect the default value for the HDLSynthTerm property. The
default is:

27

Simulink® HDL Coder™ Release Notes

['set_option -technology VIRTEX4\n',...
'set_option -part XC4VSX35\n',...
'set_option -synthesis_onoff_pragma 0\n',...
'set_option -frequency auto\n',...
'project -run synthesis\n']

The default value for the HDLSynthTerm property appears in the Synthesis
termination field of the EDA Tool Scripts dialog box, as shown in the
following figure.

See also “Generating Scripts for HDL Simulators and Synthesis Tools”.

Compatibility Considerations
If you have existing models that generate synthesis scripts using the previous
defaults for technology or part, you may want to update your models and
regenerate scripts.

28

Version 1.1 (R2007a) Simulink® HDL Coder™ Software

Version 1.1 (R2007a) Simulink® HDL Coder™ Software
This table summarizes what’s new in V1.1 (R2007a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Bug Reports No

New features and changes introduced in this version are

• “Sign Block Supported for HDL Code Generation” on page 29

• “Link for Cadence Incisive HDL Cosimulation Block Supported” on page 29

• “GUI Support for Generation of EDA Tool Scripts” on page 30

• “Embedded MATLAB™ Function Block Supported for HDL Code
Generation” on page 31

• “Stateflow® HDL Code Generation Updates” on page 31

Sign Block Supported for HDL Code Generation
The Sign block (Simulink/Math Operations/Sign) is now supported for HDL
code generation. See “Summary of Block Implementations” for further
information.

Link for Cadence Incisive HDL Cosimulation Block
Supported
The coder now supports HDL code generation for the Link for Cadence®

Incisive® HDL Cosimulation Block. You can use the HDL Cosimulation block
with the coder to generate an interface to your manually written or legacy
HDL code. When an HDL Cosimulation block is included in a model, the
coder generates a VHDL or Verilog interface, depending on the selected target
language. See “Code Generation for HDL Cosimulation Blocks” for details.

29

http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a
http://www.mathworks.com/support/bugreports/?product=HD&release;=R2007a

Simulink® HDL Coder™ Release Notes

GUI Support for Generation of EDA Tool Scripts
The new EDA Tool Scripts pane of the GUI (shown in the following figure)
lets you set all options that control generation of script files for third-party
electronic design automation (EDA) tools. In previous releases, script
generation options were available only through makehdl and makehdltb
properties.

The list on the left of the EDA Tool Scripts pane lets you select from the
following categories of options:

• Compilation script: Options related to customizing scripts for
compilation of generated VHDL or Verilog code.

• Simulation script: Options related to customizing scripts for HDL
simulators.

• Synthesis script: Options related to customizing scripts for synthesis
tools.

30

Version 1.1 (R2007a) Simulink® HDL Coder™ Software

See “Generating Scripts for HDL Simulators and Synthesis Tools” for detailed
information on the EDA Tool Scripts options and on script generation in
general.

Embedded MATLAB™ Function Block Supported for
HDL Code Generation
The coder now supports synthesizable HDL code generation from the
Embedded MATLAB™ Function block. See “Generating HDL Code with the
Embedded MATLAB Function Block” for detailed information.

We are interested in getting your feedback on this introductory feature.
Please send your responses to: hdlcoder_feedback@mathworks.com.

Stateflow® HDL Code Generation Updates
This section describes some limitations on the use of Stateflow® charts in
HDL code generation have been removed in the current release. These are:

Restriction on Reading from Output Ports Removed
In the previous release, reading from output ports was disallowed. This
restriction has been relaxed. You can now read from output ports if outputs
are registered. (Outputs are registered if the Initialize Outputs Every
Time Chart Wakes Up option is deselected.)

Stateflow® Charts Fully Support Fixed Point Data Type
In the previous release, fixed-point data type support for Stateflow HDL code
generation was limited to fixed point without scaling. This limitation has
been removed. You can now use fixed-point data types without restriction in
Stateflow charts intended for HDL code generation.

31

mailto:hdlcoder_feedback@mathworks.com

Simulink® HDL Coder™ Release Notes

Compatibility Summary for Simulink® HDL Coder™
Software

This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with
Version Compatibility Impact

Latest Version
V1.3 (R2008a)

See the Compatibility
Considerations subheading
for this new feature or change:

• “Enhanced modelscope Syntax
Increases Portability of Control
Files” on page 18

V1.2 (R2007b) See the Compatibility
Considerations subheading
for this new feature or change:

• “Default Hardware Target for
Synthesis Scripts Updated to
Virtex-4 ” on page 27

• “Support for New Embedded
MATLAB™ Bitwise Functions” on
page 27

V1.1 (R2007a) None

32

	toc
	Summary by Version
	Using Release Notes
	What’s in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	About Functions and Properties Being Removed
	Version 1.3 (R2008a) Simulink ® HDL Coder Software
	Complex Data Type Support
	New Options Supporting Complex Data Types

	Test Bench Ehancements
	Test Bench Supports Complex Data Type
	New Test Bench Options and Properties

	Additional Blocks Supported for HDL Code Generation
	Enhanced Pipelining Support
	Input Pipelining
	Automatic Pipeline Insertion for Embedded MATLAB Function Block
	Customizable Pipeline Register Names

	Additional RAM Blocks
	Enhanced Math Function and Divide Block Support
	Optional Suppression of Reset Logic Generation for Selected Dela
	Enhanced Embedded MATLAB Function Block Support
	hdlfimath Utility for Configuring Optimized FIMATH Settings
	Support for Complex Data Type
	Support for Compiled External M-Functions on the Embedded MATLAB
	Support for Non-Tunable Parameter Arguments
	Enhanced Support for Fixed-Point Functions

	Stateflow Chart Support Supports Complex Data Type
	hdlnewcontrolfile Function Generates Control Files Automatically
	Integrating FPGA Vendor Tools with Simulink ® HDL Coder
	Timing Controller Optimization for Multirate Models
	Enhanced modelscope Syntax Increases Portability of Control File
	Compatibility Considerations

	“What’s This?” Context-Sensitive Help Available for Simulink Con
	Limited Variable-Step Solver Support

	Version 1.2 (R2007b) Simulink ® HDL Coder Software
	HDL Code Generation for Single-Clock Multirate Models
	Additional Blocks Supported for Multirate Code Generation
	New Property Added in Support of Multirate Code Generation
	Requirements and Restrictions for Multirate Code Generation

	Additional Blocks Supported for HDL Code Generation
	Dual Port RAM Block Supported for Simulation and Code Generation
	Block Implementation Parameters Include Output Pipelining
	Supported Block Implementation Parameters
	Using hdlnewforeach to Find Block Implementation Parameters

	Summary of GUI Updates
	Digital Filter Block Restriction Removed
	Support for New Embedded MATLAB Bitwise Functions
	Compatibility Considerations

	Default Hardware Target for Synthesis Scripts Updated to Virtex-
	Compatibility Considerations

	Version 1.1 (R2007a) Simulink ® HDL Coder Software
	Sign Block Supported for HDL Code Generation
	Link for Cadence Incisive HDL Cosimulation Block Supported
	GUI Support for Generation of EDA Tool Scripts
	Embedded MATLAB Function Block Supported for HDL Code Generation
	Stateflow HDL Code Generation Updates
	Restriction on Reading from Output Ports Removed
	Stateflow Charts Fully Support Fixed Point Data Type

	Compatibility Summary for Simulink ® HDL Coder Software

